On the Fractional Probabilistic Taylor’s and Mean Value Theorems
نویسندگان
چکیده
In order to develop certain fractional probabilistic analogues of Taylor’s theorem and mean value theorem, we introduce the nth-order fractional equilibrium distribution in terms of the Weyl fractional integral and investigate its main properties. Specifically, we show a characterization result by which the nth-order fractional equilibrium distribution is identical to the starting distribution if and only if it is exponential. The nth-order fractional equilibrium density is then used to prove a fractional probabilistic Taylor’s theorem based on derivatives of Riemann-Liouville type. A fractional analogue of the probabilistic mean value theorem is thus developed for pairs of nonnegative random variables ordered according to the survival bounded stochastic order. We also provide some related results, both involving the normalized moments and a fractional extension of the variance, and a formula of interest to actuarial science. In conclusion we discuss the probabilistic Taylor’s theorem based on fractional Caputo derivatives. MSC 2010 : Primary 60E99; Secondary 26A33, 26A24.
منابع مشابه
The fuzzy generalized Taylor’s expansion with application in fractional differential equations
In this paper, the generalized Taylor’s expansion is presented for fuzzy-valued functions. To achieve this aim, fuzzyfractional mean value theorem for integral, and some properties of Caputo generalized Hukuhara derivative are necessarythat we prove them in details. In application, the fractional Euler’s method is derived for solving fuzzy fractionaldifferential equations in the sense of Caputo...
متن کاملThe mean value theorem and Taylor’s theorem for fractional derivatives with Mittag–Leffler kernel
*Correspondence: [email protected] 1Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK Full list of author information is available at the end of the article Abstract We establish analogues of the mean value theorem and Taylor’s theorem for fractional differential operators defined using a Mittag–Leffler kernel. We formulate a new model for the fract...
متن کاملModeling Diffusion to Thermal Wave Heat Propagation by Using Fractional Heat Conduction Constitutive Model
Based on the recently introduced fractional Taylor’s formula, a fractional heat conduction constitutive equation is formulated by expanding the single-phase lag model using the fractional Taylor’s formula. Combining with the energy balance equation, the derived fractional heat conduction equation has been shown to be capable of modeling diffusion-to-Thermal wave behavior of heat propagation by ...
متن کاملOn boundary value problems of higher order abstract fractional integro-differential equations
The aim of this paper is to establish the existence of solutions of boundary value problems of nonlinear fractional integro-differential equations involving Caputo fractional derivative by using the techniques such as fractional calculus, H"{o}lder inequality, Krasnoselskii's fixed point theorem and nonlinear alternative of Leray-Schauder type. Examples are exhibited to illustrate the main resu...
متن کاملNew Results on Fractional Power Series: Theories and Applications
In this paper, some theorems of the classical power series are generalized for the fractional power series. Some of these theorems are constructed by using Caputo fractional derivatives. Under some constraints, we proved that the Caputo fractional derivative can be expressed in terms of the ordinary derivative. New construction of the generalized Taylor’s power series is obtained. Some applicat...
متن کامل